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ABSTRACT

We discuss the effects of finite source size on the diffraction pattern produced
by scattering in a thin screen, particularly as applied to radio-wave scattering.
by density fluctuations in the interstellar plasma. Using the stationary phase
approximation, we express the Kirchoff integral for the diffracted electric field as
a phasor sum, and show that source structure introduces correlations between
such sums, combined to form i.ntensity or interferometric visibility. We obtain
expressions for the probability distribution functions of intensity of a source
of finite size, and of interferometric visibility on a baseline shorter than the
scale of the diffraction pattern. We also present expressions for the first and
second moments of intensity and visibility, for arbitrary source structure, and
for sources with Gaussian distribution of intensity. We also present results for
sources that radiate Gaussian beams, possibly with imperfect spatial coherence.
With these results, observations of the diffracted electric field yield information
on the structure of the scattered source, with angular resolution corresponding
to the diffraction limit of the scattering disk. These results are of interest for

studies of pulsars and other extremely compact radio sources.

Subject headings: scattering — techniques: interferometric — telescopes — pulsars:

general
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1. Introduction

This paper discusses techniques to infer the structure of astrophysical radio sources
scattered by the interstellar plasma, through a statistical analysis of their scattered radio
emission. These techniques rést on the fact that, like other optical systems, radio-wave
scattering interstellar plasma produces a diffraction pattern in the plane of the observer
that is the convolution of the response to a point source, with an image of the source
(Goodman 1968, Cornwell et al. 1989). These techniques are to be distinguished from
the many, often highly successful techniques that remove effects of scattering to restore
“ideal” instrumental performance (see, for example, Pearson & Readhead 1984, Goodman
1985, Beckers 1993, Roggemann, Welsh, & Fugate 1997). The scattering material is part of
our instrument: it sets the angular resolution. This angular resolution is that of an aperture
with diameter equal to the “scattering disk”: the region from which the observer receives
scattered radiation. Effects of radio-wave scé,ttering in the interstellar plasma increase the

potential diffraction-limited resolution of Earth-based radio observations to nanoarcseconds.

A number of studies have addressed the problem of inferring source structm:e from the
statistics of scintillation. Salpeter (1967) and Cohen, Gundermann, & Harris (1967) derive
a relationship between source size and the depth of modulation of scintillation, which we
discuss in § 6.2 below. Cohen et al. used this relationship to set limits on the intrinsic sizes
of extragalactic sources from their scintillation in the solar wind. This technique has become
standard, particularly for measurements of the size of radio sources scatter-broadened by
the interstellar plasma, from their scintillation in the solar wind (Hewish, Readhead, &
Duffett-Smith 1974, Armstrong & Coles 1978, Rao & Ananthakrishnan 1984, Hajivassiliou
1992).

Introducing a complementary technique, Backer (1975) and Cordes, Weisberg, &

Boriakoff (1983) set upper limits on displacement of pulsars’ emission regions over the
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course of their pulses, by comparing the scintillation patterns at different times throughout
the pulse. Wolszczan & Cordes (1987) and Wolszczan, Bartlett, & Cordes (1988) observed
occurrences of periodic “fringes” in the scintillation pattern of pulsars B1237+25 and
B1133+16, and interpret them as the result of interference between 2 widely-separated
paths through the interstellar plasma. They observe displacement of the fringes over

the pulse, which they interpret as motion of the emission region. Smirnova, Shishov, &
Malofeev (1996) searched for such displacement at an observing frequency of 102.7 MHz,
and observe changes of the diffraction patterns over the pulses of pulsars B0834+-06,
B1133+16, B1237+25, and B1919+21.

Cornwell, Anantharamaiah, & Narayan (1989) adopted a more general approach.
They noted that the diffraction pattern in the plane of the observer is the convolution
of an image of the source with the response of the optical system to a point source —
the “point spread function”. (Of course, for scattering by a random medium, the point
spread function is not condensed in a central region, as it commonly is for imperfect
optical systems.) For scattering by a thin screen, the point spread function is the Fourier
transform of the geometric plus scattering phase. Cornwell et al. noted that a Fourier
transform technique used for calibrating imperfections in the reflecting surfaces of antennas
to obtain diffraction-limited images (Cornwell & Napier 1988) could also be used to
image sources scattered by the solar wind or the interstellar medium; they noted that this
technique requires impractically large filled apertures. Cornwell & Narayan (1993) suggested
techniques that involve comparison of signals among only 4 to 6 antennas. Because most
radiotelescope arrays are not only poorly filled, but are dominated by baselines from a
single large aperture to a number of small ones, we reduce the problem to that of 2 antennas

observing a scintillating source.

Fluctuations in the density of free electrons in the interstellar plasma produce varjations
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in the index of refraction. A pointlike source observed through such a medium produces

a random diffraction pattern in the plane of the observer. The scattering is said to be
“strong” if phase differences among different paths are greater than 2mw. At wavelengths
longer than a few c¢m, the scattering of pulsars by fluctuations in interstellar electron density
is usually extremely strong. In strong scattering both the amplitude and phase of the
diffracted electric field vary with location in the observer plane: the diffraction pattern is
complex. The spatial scale of the diffraction pattern at the observer is the linear resolution
of the scattering disk, treated as a lens: about A/f, where ) is the observing Waveléngth
and 6 is the angular size of the scattering disk. The observer sees the source scintillate on a
timescale t;gs = A\/6V as he moves through the diffraction pattern with transverse velocity
V1. The diffraction pattern also changes with observing frequency, with characteristic
bandwidth Avy, because phase differences aﬁlong the lines of sight from the scattering disk
to the observer’s location change with frequency. Observations of the diffraction pattern
thus require time averaging of less than t;ss and frequency averaging of less than'Avy. Such

observations are said to be in the speckle limit of interstellar scattering (Desai et al. 1992).

In this paper we explore the effects of finite source size on several observable quantities
that measure interstellar scattering. In § 2 we introduce the thin-screen approximation for
scattering and the Kirchoff integral for the electric field. We introduce the stationary phase
approximation, and express the Kirchoff integral as a phasor sum. We point out that this
is essentially the “high-frequency approximation” of Rumsey (1975). We then apply this
expression to several scattering observables. In § 3 we present expressions for intensity
and interferometric visibility for a point source and extended, spatially-incoherent sources.
In § 4 we calcuate the average interferometric visibility for a point source, and for small
extended sources. In § 5 we find the probability distribution functions for the intensity of a
small extended source, and for the interferometric visibility on a short baseline. In § 6 we

present expressions for the decorrelation bandwidth of intensity and of the interferometric
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visibility, for general source structure and for elliptical Gaussian distributions of inténsity.
In § 7 we generalize these results to a simple model of a fully or partially spatially-coherent

source that radiates a Gaussian beam. In § 8 we summarize the results.

2. Kirchoff Diffraction and the Stationary Phase Approximation
2.1. Kirchoff diffraction

Kirchoff diffraction relates the electric field at the source to that in the plane of the
observer (Born & Wolf 1980, Goodman 1985). The electric field in the plane of the observer
E(p) is calculated as the double integral of the electric field over all points s on the source
and over all points x on the scattering screen.

eikldl -

E(p) = / dee“Nx) e 5T EC) 1)

Herer = R+ (x —s) and d = D + (p — x), where R is the separation of source plane and
scattering screen and D is the separation of screen and observer plane. Figure 1 shows the

geometry. The phase introduced by the screen is ®(x), and the wavenumber is k = 27 /A. In

the paraxial approximation, the deflections s, x, and p are assumed small with respect to R

and D, and the integrals can be recast as a double Fourier transform, with multiplication by
a “transmission function” between the two transforms (Cornwell & Napier 1988, Cornwell

et al. 1989):

iC

¢ dx e~ k/D)px gig(x) ds e {k/ B x p(g), (2)

R.D screen source

E(p)

The phase of the transmission function, ¢(x) = {®(x) + k[55 + 55|22}, is the screen phase
®(x) plus the parabolic part of the geometric phase, k[55 + 5=]z%. The geometric phase
defines the Fresnel zones at the scattering disk (Jackson 1975). The constant phase C

absorbs large, arbitrary phases proportional to the distances D and R. We absorb the
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quadratic phase ks?/2D into the phase of the source, which varies quickly with location,
particularly for an incoherent source, as discussed in § 3.2 below. For interstellar scattering,
quadratic phase in the observer plane, kp?/2R, varies over ~au scale of more than 108 km,
longer than any interferometer baseline; we thus ignore it. This phase could also be removed

instrumentally, if baselines long enough to detect it were available.

A traditional lens works by arranging the screen phase ®(x) to precisely cancei the
geometric phase, so that the double Fourier transform results in an image of the source
in the observer plane (Goodman 1968). In interstellar scattering the screen phase is
random. If the statistics of the screen are stationary in x, the phase structure function
Dy(b) = ((®(x + b) — &(x))?) characterizes ®(x). Here the angular brackets (...) indicate
averaging over an ensemble of screens with identical statistical properties. For power-law
spectra of density fluctuations, perhaps resulting from a turbulent cascade, Dy(b) takes a
power-law form over some raﬁge of separation b (Rickett 1977, Higdon 1984, Montgomery,

Brown, & Matthaeus 1987, Spangler & Gwinn 1990, Goldreich & Sridhar 1995).

As Eq. 2 shows, interstellar scattering acts like an imperfect optical system in that the
diffraction pattern in the plane of the observer is the convolution of the diffraction pattern
of a point source (the “point spread function”) with a magnfied image of the source: The
magnification factor is M = D/R. If the source is spatially incoherent (as are nearly all
terrestrial and astrophysical sources) then the intensity of the diffraction pattern is the
convolution of the intensity pattern .for a point source with the intensity structure of the
source. If the source is spatially coherent (as are laboratory lasers, mirages, and scattering
disks treated as sources) then the electric field of the diffraction pattern is the convolution

of the electric field for a point source with the electric field of the source (Goodman 1968).
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2.2. Stationary phase approximation and application
2.2.1. Points of stationary phase

The stationary phase approximation (Jackson 1975, Born & Wolf 1980) can be
useful for the study of strong scattering by a thin screen. This approximation ignores all
contributions to the integral over the screen in Eq. 2, except at points where the phase of
the integrand has zero derivative with respect to x. We denote these points of stationary
phase {x,}. The approximation is most accurate in the limit where the phase wraps through
many turns between these points; contributions from other points average away. This
approximation thus ignores all points except those where the gradient of the screen phase

precisely cancels that of the geometric phase.

The distribution of points of stationary phase over the screen defines the “scattering
disk”: the region from which the observer receives radiation. The size of the scattering
disk defines 0: 6 = \/@ /D. Here the angular brackets (...) again indicate averaging over
an ensemble of screens with identical statisﬁcal properties. Sometimes the refractive scale,

rr = 0D, is used to characterize the scattering disk.

The Fresnel scale, rp = .(k[-;f + Qlﬁ])—l/z, parametrizes the variation of ge;)metric
phase. The length 74 for which Dy(r4) = 1 characterizes the variation of screen phase. In
strong scattering r; << rp << rg: the screen phase varies greatly within each Fresnel
zone, and the scattering disk covers many Fresnel zones (Cohen & Cronyn 1974, Narayan
& Goodman 1989). Thus we expect many points of stationary phase to contribute to the

integral in Eq. 2.

A point of stationary phase x, contributes exp{i¢,}/H, to the integral over x in Eq. 2,
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where ¢, is the phase of the integrand at x,, and H, gives the sharpness of the extremum:

9%
0T, 0Ty,

1/2
det

¢z = ¢(xz)a Hz = (3)

Xy

Here m and n take the values £ and 7, denoting the 2 dimensions in the plane of the screen.
We define coordinates parallel to these directions: (s¢, s,) in the source plane, (§,7) at the
screen, and (p¢, p,) in the observer plane. The electric field of a strongly-scattered source

can thus be written as a phasor sum over the points of stationary phase:

1 .. .
E(p) = Zﬁewzw(k/mp-xt / ds e~ iF/Bx%s B(g), (4)

1 7 source
For convenience we absorb the constant factor €!“/RD into the screen phase, and thus into
e, In Figure 2 we plot ¢(x) and the resulting points of stationary phase for a sample

screen.

2.2.2. Phases of stationary phase points

In strong scattering, the screen phase varies much more rapidly than the geometric
phases; both vary by many turns across the scattering disk. Thus, the phases of the
individual points of stationary phase are distributed evenly in phase, modulo 27. The
correlation of points of stationary phase depends on the statistics of ®(x). If, for example,
the screen is the sum of many individual phase-shifting “clouds,” each with spatial scale a
and each responsible for many turns of phase, then the separation of stationary phase points
is about a, their phases are uncorrelated, and phases of even the closest points of stationary
phase differ by many turns. However, observations of turbulent fluids, measurements of
scattering, and theoretical work on plasma turbulence motivate power-law spectra spectra
of density variations in the screen (Lee & Jokipii 1976, Cordes, Weisberg & Boriakoff
1985, Gwinn et al. 1988, Goldreich & Sridhar 1995, and references therein). These studies

commonly suggest a power-law index near that of Kolmogorov turbulence, The power-law

*
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extends from some maximum outer scale ag down to a minimum inner scale a;. The points
of stationary phase are then separated by about the inner scale. If 7y << a; then the
stationary phase approximation holds. However, some evidence indicates that ry ~ a1, at
least for heavily-scattered sources (Spangler & Gwinn 1990, Molnar et al. 1995, -Wilkinson

et al. 1994), although the effects are quite subtle.

Even in cases where the stationary phase approximation is not valid, the Fresnel
integral over the screen can certainly be represented as a phasor sum, and in strong
scattering the phases will be distributed evenly over 27. Rumsey (1975) and Codona et al.
(1986) note that in strong scattering, points Within a distance rq of some point x on the
screen are likely to have the same phase, to within about a radian. Points with much greater
separations have phase differences of many turns, so that their products can be taken to
be uncorrelated. This is the “high-frequency approximation” of Rumsey. In this picture, a
single phase and weight can describe the Fresnel integral within such a neighborhood, and
the integral becomes sum over neighborhoods. The phase ¢, and weight H, have different

interpretations from the stationary-phase approximation, however.

Even within the stationafy—phase approximation, points at large separations can have
correlated phases because of fluctuations with large spatial scales. However, in strong
scattering, the difference in phase is many times 27, so that the distribution of phase
difference, modulo 27, is uniform. For observations at a single frequency, the phases ¢, can
thus be regarded as uncorrelated. However, small changes Ak in observing wavenumber
k can produce correlated changes in screen phase ®(x) over large regions. Codona et al.
(1986) investigate these carefully for the correlation function of intensity with frequency
and position, and find that the effects are small for localized regions in the observer plane:
Ap << 0D. Therefore, we assume in this work that the integral over the screen can be

approximated by a sum of uncorrelated phasors, as in Eq 4.
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2.2.8. Source size, baseline length, and frequency shift

A displacement of source or observer introduces a phase gradient across the screen, and
a frequency change introduces a parabolic phase change. In either case, the locations of
points of stationary phase shift. However, for small displacements or changes in frequency,
the points of stationary phase do not move far. This results from the fact that in strong
scattering, the screen phase ®(x) varies much more rapidly than the parabolic geometric
phase k[55 + 5-]2? (Cohen & Cronyn 1974), so that the extrema of phase are sharp
compared with the smooth phase gradients introduced by small changes in geometrical
parameters. For a displacement of the source As, the phase gradient is approximately
(kAs/R)z. This gradient shifts the location of a point of stationary phase, by about
Az ~ Asr2/rk. (Here we assume that, approximately, 7y ~ R/k ~ D/k.) A similar
expression holds for shift in position of the observer Ap. In strong scattering, rq << 7,
and the phase and strength of the point of stationary phase remain nearly unchanged for
small displacements at the source. Similarly, for a change in wavenumber Ak, the Sl:lift of
a point of stationary phase is Az ~ %rd, where we use the fact that for a “typical” point

of stationary phase, z ~ 6D = r%/ry. For small changes in observing frequency, Ak << k,

and the phase and strength of the point of stationary phase again remain nearly unchanged.

The goal of our theoretical studies is to provide comparisons for observations. Such
observations measure moments of the electric field E(p) in the observer plane. Little
information is gained from a single observation of the scintillation pattern. Ste;tistical
averages, perferably of many realizations of particular screens, are most useful for
comparison of theory and observation. We consider such statistical averages in the

remainder of this paper.
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3. Intensity and Interferometric Visibility
3.1. Point source

The simplest observable quantity is the intensity, the square modulus of electric field.
I=(EE"), (5)

Here the subscripted angular brackets (...);,p indicate that we average the electric field
over a time interval much greater than the reciprocal of the observing bandwidth, but not
over more than a single set of points of stationary phase. Such a set corresponds to a single
realization of the scattering screen, or a single scintillation timescale and bandwidth. For a
point source, E(s) = E;§(s), and Eq. 4 shows that the electric field E is a random phasor
sum, with statistics of a random walk. The intensity of a point source is:

o L

4 J

Here, without loss of generalify we take p = 0. This equation shows that the intensity is
the square modulus of a sum of random phasors, with phases distributed randomly between

0 and 2.

The correlated flux density, or visibility, measured by interferometry is the product of

electric fields at 2 different locations A and B.
Cap = (E(A)E*(B))/p - (7)

Without loss of generality, we assume that station B lies at p = 0 and station A lies at

p = b. For a point source, the visibility C4p is then:

Canle) = (2 G wom) (2 7). ©

) 1 7

Note that this is precisely the expression for the intensity, except for the factor e=**/D)bx.

in the first sum.
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3.2. Extended, spatially-incoherent source

For a spatially-incoherent source, the electric field is noiselike at each point on the

source and is uncorrelated between different locations s; and ss:
(E(s1)E*(s2))1/p = I(s1) 6(s1 — sp) (9)

Here the subscripted angular brackets (...);,p again indicate that we average the product
of electric fields over a time interval much greater than the reciprocal of the observing

bandwidth.

Scattering preserves the spatial coherence of the source (Born & Wolf 1980, Goodman
1985, Cornwell et al. 1989). Using Egs. 4 and 9, we find the expression for intensity of the

scattered source is:

i$, —i¢ ) *
I=FFE" = Z € et Z € / dsI(s) gik/R)(x,—x:)-s (10)
Hl H] source

? J

Without loss of generality we take p = 0. The visibility is:

et _ it ' i
CAB(b) = (Z __ﬁ_e—z(k/D.)b xz) (Z 7 ) / ds I(S) ez(k/R)( 3 —X1) (11)
9 source

1 ? -7

For both intensity and visibility, the nonzero size of the source introduces correlations
between sums over ¢ and j: each product is multiplied by a Fourier component of
the intensity distribution of the source. Indeed, this Fourier component is simi)ly the
interferometric visibility that would be measured on the interferometer baseline x, — x,
between the 2 points of stationary phase. In interstellar scattering, these points can be

separated by as much as a few AU.

As a concrete example, appropriate for many simple source structures, consider a

source with a circular Gaussian distribution of intensity, with full width at half maximum

v/81n 20

2

I(s) = Io exp{—%%}. (12)
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Note that o is the linear size of the source; o/(R + D) is the angular size as viewed from
the observer. The Fourier transform of this distribution is also Gaussian, with standard

deviation ko/R. The expression for interferometric visibility is then:

gt o e\ {5 (ka/R)x,-x?
Cap(b) = (Z - e—z(k/D)bx,) (Z — )e{ 2 } (13)
J

t 4 J

= (Z Gze_i(k/D)b'xl> (Z G;) e(kd/R)2xj'x‘L’
2 J

where the new phasors are

G, = i@e—%(ka/R)w?_ (14)

2

Note that G, is complex. This expression shows explicitly how an extended source

introduces correlations between the sums over 2 and 7 in Eq. 11. These correlations decrease
the relative weights of terms in the product of sums for which x, and x, are far apart. This
decrease acts to effectively “vignette” the scattering disk: it reduces the effect of points of
stationary phase near its periphery, because such points have fewer close neighbors, on the
average, than points near the center of the scattering disk. The expression for G, shows this

reduction. The expression for intensity is the same, with b = 0.

4. Second Moments: Average Visibility
4.1. Average visibility for a point source

The normalized average visibility on interferometer baseline b is V' (b) = (Cag(b))/(I).
The angular brackets {...) denote an average over an ensemble of screens with similar
statistics. The normalization factor (I) is the average intensity; because intensity is the
interferometric visibility at zéro baseline, V(0) = 1. Commonly, the average visibility
is related to the phase structure function of the screen, Dy(x), using Eq. 2 (Rumsey

1975, Rickett 1977). This derivation involves the small phase differences between pairs of
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points close together on the screen, as quantified by the phase structure function. Here
we follow a different approach, based on our assumption that stationary phase points have

uncorrelated phases. We later adapt this to sources with finite size.

For a point source, Eq. 8 shows:
1 1 e'*

V(b) = —(Cup(b)) = — e ik/ D)o, e : ' 15
) = 5 Cano) = 5 (05 > (15

J

The angular brackets indicate an average over an ensemble of screens, with the points
weighted by 1/H2. In the product of sums within angular brackets, the phases of the
stationary phase points cancel for terms with + = j, so that these terms can contribute to
the ensemble average. Following our assumption that the phases of points of stationary
phase are uncorrelated, the terms in the product with 2 # j have large, random phases;
modulo 27, they are unformly distributed, and average to 0 over the ensemble.

Thus, we find

7 (b) _ <_}5 <XZ: T_Il_?e-i(k/p)b.xz> _ (16)

We define P(x) to be the probability over the ensemble of finding a point of stationary
phase at x, weighted by strength 1/H(x)2. Then

| V(b) = / dx P(x) e~ ik/D)bx: (17)

Note that P(x) is the distribution of intensity for a scattered point source, averaged over
an ensemble of scattering screens. The normalized average visibility is simply the Fourier
transform of P(x). This agrees well with the simple picture where the observer sees the
points of stationary phase as “speckles”, distributed over the scattering disk accordiné to the
probability density function P(x), with the strength of each point given by 1/H(x)?. The
interferometer measures one component of the Fourier transform of that source structure.
Observations with many baselines, within the speckle limit, can produce an image showing

the points of stationary phase (see, for exarriple, Cornwell et al. 1989).
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To an excellent approximation, the derivative of screen phase 0%/0x is drawn from a
Gaussian distribution. To a good approximation, the H, are uncorrelated with 0®/0x|y,.

In this case, the distribution on the screen of points of stationary phase x, is also Gaussian:

e " ag)
(%) = 5eg2D2 P\ "32D2 | -

Here 0 is the observed angular size of the scattering disk:

o 1,
0 —.ﬁ@z)- (19)

Under the usually excellent approximation that the weights 1/H, are uncorrelated with x,,

the average in Eq 17 yields for the normalized average visibility of a point source:

V(b) = <—%<0AB> (20)
= /d:)cP(x)e_i(k/D)b'x

= exp {—%(k@b)Q}

Note that V must be real. This serves as an alternative definition for 6.

The density fluctuations responsible for interstellar scattering appear to follow a power-
law spatial spectrum, perhaps over several orders of magnitude in spatial wavenumber. For
a power-law spectrum of fluctuations of ®(x), the distribution on the scattering screen
of points of stationary phase x; is Gaussian_, but H, is weakly correlated with 0®/9x], ,
and so with |x,|. This leads to a slight departure of the average visibility from a Gaussian
distribution. This departure has been predicted theoretically (Rumsey 1975, Rickett 1977)
and is observed for some sources (Gwinn et al. 1988, Gwinn, Moran, & Reid 1990, Moran
et al. 1990, Wilkinson et al. 1994, Molnar et al. 1995). For studies of effects of source

structure on scattering observables, Eq. 18 is an excellent approximation.

In general, particularly for scattering in the magnetized interstellar plasma, the

scattering is anisotropic, so that 6 # 6, (Wilkinson et al. 1994, Goldreich & Sridhar
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1995, Desai, Gwinn, & Diamond 1995, Trotter, Moran, & Rodriguez 1998). In practice, it
is often most convenient to scale coordinates in the observer and source planes to account

for this anisotropy.

4.2. Average visibility for an incoherent source

If the source has nonzero size, but is small enough that the points of stationary phase
on the screen are the same for each location on the source (see § 2.2.3), the average visibility
is the ensemble average of Eq. 11, which contains as a factor the Fourier transform of the
intensity distribution of the source:

. 1 ei‘i’l . e"id’J .
b) = — € —i(k/D)bx, / I(s) ¢i(k/R)(x:—x;)s 21
Vb= <Z m° ZJ H, Droures 85 1E)€ (21)

(3

Again, terms with 1 # y have large phases uniformly distributed between 0 and 27, because
the points of stationary phase have uncorrelated phases, and do not survive the ensemble
averaging. For terms with ¢ = 7, the integral over the source collapses to a fact_or of the
integrated intensity of the source, and the point of stationary phase contributes 1 JH? to
the ensemble average. Thus, the average visibility is the same for a small extended source

as it is for a point source, at the same location, and is given by Eq. 20.

If the source is large enough to be resolved by the interferometer in the absence of
scattering, it will be large enough that points of stationary phase shift significantly, for
different points on the source. In this case each point on the source will have its collection
of points of stationary phase, each drawn from a distribution of the form of Eq. 18, each
centered on the point where the line of sight to the source intersects the screen. We can
take this into account by forming the ensemble average in Eq. 21 before integrating over
the source. In the ensemble average, the product of sums will again collapse to products of

terms with 2 = 7, producing a scattering disk of the form of Eq. 20 for each point on the
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source. The integral over source structure then produces a convolution of this point-source
response with the source structure. We thus obtain the well-know fact that the visibility of
an extended, spatially incoherent, scattered source is the Fourier transform of the structure

of the source, times the visibility of a scattered point source:

Vo) = [ dsI(s) P(x - (525)s) et/ (22)

This result is true under quite general assumptions (see, for example, Rickett 1977). In
effect, the source structure averages over scintillation patterns to achieve the ensemble

average in any single observation.

5. Distribution Functions
5.1. Distribution of intensity for a point source
For a point source, the electric field is given by Eq. 4 as

¢itn
E=Y" T (23)

Here, we take s = 0 and p = 0 without loss of generality. Because the phases of the different
points of stationary phase are uncorrelated .and the H, are all approximately equal, the
phasor sum has statistics of a random walk. Therefore, the electric field is drawn from

a Gaussian distribution in the complex plane: Pp(E) = exp{—|E|?/1y}/xI,, where I is
the mean intensity. The intensity I = |E|? is drawn from an exponential distribution:
Pi(I) = Pg(VI) |E| (d|E|/dI) = exp(—1/I,)/I,, as is well known for strong scattering
(Scheuer 1968, Rickett 1970, Goodman 1985). The moments of the distribution of I are
(I) = I, {(I?) = 21y%, and (I™) = n! I,".
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5.2. Distribution of intensity of a small incoherent source

Now consider the distribution of intensity for a small, spatially-incoherent source. Eq.
10 gives the intensity for arbitrary source structure. Suppose for definiteness that the source
has a Gaussian distribution of brightness, with linear size (standard deviation) o¢ along one

axis and o, along the other. Then Eq. 10 shows that the intensity is:

I = (Z Gl> (Z G;‘) e(k/R)2{£1£JU§+7h77.76727} (24)
z 7 .

where again
e

G, = & exp 3 k/RP (et tnial) (25)

(3

and where x, = (§,,7,). Because of the products in the final factor of Eq. 24, this expression

cannot be treated as the square modulus of a random walk.

For sources smaller than the resolution of the scattering disk, acting as a lens,
(k/R)z,0 << 1. In this case we can expand the final factor in Eq. 24 though first order to

yield 3 terms:
(/R EtsotanmoD) 1 + (k/R)(€0¢) (K/R)(&0¢) + (k/R)(m.oy) (k/R)(m,0,).  (26)

Each of the terms is a product of identical factors depending on x, or x,. The intensity is
then

I~ E()Eg + ElgEikg + ElﬂE;n (27)

where

Br=YG  Bc=YGH/REs) Eu=YGH/Rme) ()

Because x, runs through many Fresnel zones in strong scattering, and ¢, varies greatly
within each Fresnel zone, x, and ¢, are uncorrelated. Therefore the electric fields Ej,
E¢, and E), have statistics of independent random walks. They are uncorrelated phasors

drawn from 3 independent Gaussian distributions. Their square moduli are drawn from
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uncorrelated exponential distributions. The net intensity I is thus the sum of 3 independent

“Intensities,” each drawn from a different exponential distribution.

The probability distribution function for I is the convolution of these 3 corresponding

exponential distributions, which have exponential scales
Iy = EyEy Le=1y (kM0o;)? Iy, = Iy (kMbo,)? (29)

Here M = D/R plays the role of magnification for a lens. Calculation shows that this

convolution is the weighted sum of the 3 exponentials:

P(I) = no_—hﬁfo_—h,f) exp {“I/Io}+m exp {’1/115}*'(71,%@ exp {—1/Iiy}
(30)
The probability is normalized to 1: [dIP(I) = 1. For a small source, scales of the second
and third exponentials are small, and the distribution function differs from that for a point
source only at small intensities. Eq. 30 shows that P(I) = 0 and dP(I)/dI =0 at I = 0;
these facts and normalization yield the correct weighting of the 3 exponentials. The mean

intensity for Eq. 30 is
1y = I+ I+ 113,,.
B+ 1+ 13,

Similar expressions, with higher powers in the numerator, give the higher moments of

(31)

the intensity. Figure 3 shows an example of such a distribution. Eq. 30 is consistent
with the relation between source size and modulation index derived by Salpeter (1967)
and Cohen et al. (1967). Eq. 54 below gives the second moment of I for an incoherent

Gaussian-distributed source, and recovers their result.

5.3. Interferometric visibility of a point source: short baselines

Equation 8 gives the interferometric visibility for a point source, which differs from

intensity by the factor e!*/P)** When the baseline is short compared with the scale of the
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diffraction pattern, so that kbg:/D << 1, then /D)% ~ 1 _4(k/D)b - x,, and’
Cap(b) = EqEy* + EppEy” (32)
where Ej is the electric field observed at the reference station, and

Ey=-% e; i(k/D)b - x,. (33)

2

From the preceding sections, we know the distributions of Fy and Iy = EgFEy*. Note that,
like Ejy, Eyy is the sum of many phasors, of random lengths and phases. Thus, Ej, will be
drawn from a Gaussian distribution. Moreover, F1, will be independent of Ey because the
factor —i(k/D)b - x, changes the lengths of the phasors by an amount proportional to x,,

which is uncorrelated with ¢,.

The probability density function for F; is

P(EY) = oo exp{~ (B4 136} (34
where
8" = (((k/D)b-x,)*) = (k6b)* (35)

Here, as in Eq. 18, (..), indicate an average over an ensemble of screens, with points

weighted by 1/H?2.

We calculate the distribution function for C4p by convolving the exponential

distribution function for I = FEoEy* with the Gaussian distribution for Ey;, scaled by Ej.

_ i 2 Re(C’AB) 2 1 |CAB|
P(CAB) = o IO(SQ exp <—I;s—'2—> KO (“ 52 + ﬁ IO . (36)

Here K| is the modified Bessel function of the second kind, of order 0. Figure 4 shows a

The result is

sample plot of the distribution function P(C4p). To a reasonable approximation, P(Cy4p)

is nearly an exponential along the real axis, convolved with a Gaussian along the imaginary
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direction. The exponential scale of the real part is the mean intensity, lo. The variance of
the imaginary part, at a given value of the real part of Cy4p, is proportional to the square
of the real part, and to (k/R)6b, the baseline length in units of the scale of the diffraction
pattern. Thus, the imaginary part varies most when the real part is large; but the largest

phase variations are found when the real and imaginary parts are small.

6. Fourth Moments

Fourth moments of the electric field provide readily observable quantities. These
quantities include the decorrelation bandwidth of scintillation and the modulation index.
In this section, we derive moments appropriate for arbitrary source structure and scattering

screens, and simpler forms appropriate for Gaussian source structures.

6.1. Decorrelation bandwidth for a point source

The scintillation pattern changes with observing frequency. This change is usually
characterized by the decorrelation bandwidth Ay, the half-width at half-maximum of the
correlation function of intensity I, expressed as a frequency difference v. In this work, for

convenience we use wavenumber k£ = 27v/c and decorrelation wavenumber Aky = 2rAvy/c.

We define the delay for the 1th point of stationary phase, 7, by c7, = 22[5=+55]+ 1 ®(x,).
This delay is the extra time for a signal to propagate via that point, rather than directly
through the center of the screen. To a good approximation, in strong scattering, and
particularly for interstellar radio-wave scattering, we can ignore the screen contribution to

7, in favor of the much larger geometric delay. In terms of 7,, the electric field of a point
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source is
1 .

E(k) = e 37
()= 3 e (37)

and the intensity is

1 . 1 .
I(k) — _e—-zkcn __eszTJ, (38)
EU: H, H, .

where we set p = 0 without loss of generality.

We consider autocorrelation functions of intensity with wavenumber difference Ak:

T .1 .1 _ 1 . : _

TRV (k + Ak :< = ptken _— iker, — _—ikerg_—  ikeTm —iAkery zAkc7'm>. 39
< (k) I(k + )> ”%:nHze Hjev e ge e e (39)
Because the phases ¢, are uncorrelated, as discussed in § 2.2, only terms with either ¢ = j
and £ = m, or with + = m and j = £, will survive the ensemble average, so that

. _ 2 1 1 iAkc(T,—Ty) |
(I(R)I(k+ Ak))y = (I) + (X s ) (40)

1

The case © = j gives the first term, which is independent of Ak; the case 1+ = m gives
the second term. We find the expected value of the average by integrating over the
probability density function P(x) given by Eq. 18, parallel to the approach of § 4. Note
that P(r) = P(x)(dr/dx)~". Because P(x) follows a Gaussian distribution, P(r) follows
an exponential distribution: P(7) = %6_7/ 7 where c1g = [% + %] 62D?%. We thus find that

the autocorrelation function follows a Lorentzian distribution, plus 1:

1 1
— I AW =14+ ————. 41
IO+ B0 =14+ sy (41)
The half width at half maximum of the Lorentzian is
2 Avy 1 1 1177111
Mg === =[S g] g (42)

Note that, approximately, Aky/k ~ r2/r%. This is in agreement with calculations based on
other approaches (Rickett 1977, Gupta 1995). The fact that the electric field in Eq. 37 is a
Gaussian random variable with zero mean can simplify this calculation; however, when the

source is extended, the E does not follow a Gaussian distribution, as §5.2 makes clear.
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6.2. Decorrelation bandwidth for an incoherent source

If the source has finite size and is incoherent, the Fourier transform of its intensity
distribution will appear in the expression for the intensity of the scintillation pattern, as Eq.
10 shows. The product of two Fourier transforms will thus appear in the autocorrelation of

the intensity:

]‘ 1 Z CR\T)—T, X X; )81
(I(K)I(k + Ak)) = (I)*+ <Z H2H2 Ack(7; - )/ds e FIR)G, )51 [ (g )

y / dsye((HAR) B0y —x)52 ] (g ) > (43)

In strong scattering, the bandwidth of the scintillation pattern is much less than the

observing frequency.

If the angular size of the source is smaller than the angular size of the scattering disk,

)

Again the Fourier transform of source structure appears. A typical pair of points of

then (Ak/R)6D s << 1, for points s on the source. Thus,

B H2 /ds ez(k/R)(xJ—xl)sI( )

(I(k)I(k + Ak)) = (I)* + <Z L1 gitken=T)
stationary phase on the screeh, with separation about 8D, will sample source structure
with spatial frequency k(D/R)6. For a source of limited size, relative to the corresponding
length A(R/D) /8, I(s) will decline for large s. Thus, points of stationary phase with large
separation will contribute less to the sum than they would for a point source. For a point
source, these pairs of points with large separations limit the bandwidth of the scintillation
pattern, because they produce large differences in travel time 7. When finite source size

makes such points contribute less, we expect the decorrelation bandwidth to broaden.

As a simple example, suppose that the source has a circular Gaussian distribution
of intensity. By substituting Eq. 12 into Eq. 44 and evaluating the integrals, with

the assumption that the distribution of points of stationary phase follows a Gaussian
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distribution, we obtain an expression of the form of Eq. 41:

. 1
Ik + AR) =1+ e R o)

where the size of the source, in units of the linear resolution of a lens with diameter of the

(45)

scattering disk, is o1 = k(D/R)0c. This is equivalent to the expression derived by Chashei
& Shishov (1976). The autocorrelation function of intensity (I(k)I(k + Ak)) again follows

a Lorentzian distribution, but now with half-width at half-maximum

Akg = (2m/c)Avy = (1/cro)y/1 + 40 " (46)

The finite size of the source increases the decorrelation bandwidth, as expected.

6.3. Decorrelation bandwidth for interferometric visibility

The interferometric visibility Cap is complex. Several correlation functions can be
formed from it. Among these are (CapC%g) and (CapCap). Both of these function are
real. From these we can calculate correlation functions for the real and imaginary parts,

and their cross-correlation.

For the correlation function (Cap(k)C%g(k + Ak)), the effects of nonzero baseline are
completely decoupled from those of frequency difference and of source structure. For this

function, we find:

1 * . 2 L
W(CAB(k)C’AB(k + Ak)) =V(b)* -1+ 1y (I(k)I(k + Ak)), (47)

where Eq. 17 gives the normalized average visibility for a point source, V(b), and Eq. 41 or
45 gives the autocorrelation function of intensity (I(k)I(k+ Ak)). Thus, for this correlation
function, decorrelation bandwidth is independent of baseline length. Note that this fact is

true for arbitrary source structure.
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As a specific example, consider a source with Gaussian intensity distribution, with

standard deviations o; and oy, along the directions ¢ and 7. For such a source,

1
(1)

where the function f; is defined by:

(Can(k)Cip(k + Ak)) = exp {—(k60)*} + f¢ fy, (48)

-1/2

fe = {1+ 40% + (Akero)?} (49)
and where we have used the definitions:
1711 1
= Z|= 4+ | D?%? 50
70 c [D + R] - (50)

O1t = k(D/R)HO’E

The same expressions, with 7 substituted for £, define the function f,.

.

The correlation function (C4p(k)Cap(k + Ak)) mixes dependences on baseline,

frequency, and source structure. For an source of finite size, observed on nonzero baseline,

1 - 11
——(Cap(k)Cap(k + Ak)) = V(b)® + < 1L iw/mpg-x) , 51
W( an(k)Cas(k+ A )) =V (b) %:HEHJQ (51)

2>

The seond term depends on baseline b as well as wavenumber difference Ak, so that for

eiAkc(‘rJ -7)

/dS ei(k/D)(xJ—x,)-sI(S)

this correlation function, decorrelation bandwidth does depend on baseline length.

For an elliptical-Gaussian source, the correlation function takes the form

1

(I)?

where the function g is defined by:

(Can(k)Cap(k + Ak)) = exp {—(k60b)2} + g¢ gy (52)

. —(1 + 402,) (kb )?
g¢ = {1+ 403, + Ak 72} 1/2exp{ U+ 40,¢) (kfbe) }

1+ 40%5 + Ak2c213
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and we use the definitions for 7y and oy from Eq. 50 above. The same expressions, with n
substituted for £, define the function g,. Figure 5 shows examples of the distributions of
(Cap(k)Chp(k+Ak)) and (Cap(k)Cap(k+ Ak)) as functions of baseline b and decorrelation

wavenumber Ak, for a point source.

The correlation functions for interferometric visibility yield several interesting limits.
For a baseline of zero length (b = 0) but with no difference in frequency (Ak = 0), we
recover from Eq. 48 or 52 the expression for the modulation index of a Gaussian source

(Salpeter 1967, Cohen et al. 1967, Gwinn et al. 1997):

(11)3<12> Cl=m?= (1 + 4gf§)_1/2 (1 + 40%,7)

For baseline of zero length (b = 0) but with nonzero frequency difference (Ak # 0), we

—1/2 (54)

recover the correlation function for a Gaussian source, Eq. 45, but now including effects
of departures from circularity. With arbitrary baseline, but with zero source size and zero

frequency difference, we obtain the second moments of the visibility for a point source:

ﬁwABcAB) = 2exp{— (k6b)’} | (55)
F(CanCin) = exp{= (kOF}+1.

From these we can calculate the second moments of the real and imaginary parts:
<I—1>2(Re [Cas)®) = %+ gexp {~ (k6b)*} (56)
@%(.Im [Cap]”) = % - %GXP {— (k9b)2}

These expressions are the moments of the probability distribution function given in Eq. 36,
but here we do not assume that that kb << 1. These moments can be used to find the
angular broadening # from observations of C4p in the speckle limit. Equivalently, we can

determine the phase structure function Dy(b) = (k8b)? Using Eq. 20 for (Cag) = (Re [Cag]),



— 928 —

we find approximate expressions for Dy(b) for short baselines:

(Im [C45]") ~ 4 {m [Cas]®)
(Re[Cag)) (Re[Cag]%) :

Dy(b) ~ 2 (57)

Thus, measurements of the real and imaginary parts of C4p, on short baselines, yield

#. This technique has been used to measure angular broadening of pulsars, and so infer
the location of scattering material along the line of sight (Desai et al. 1992, Britton
1997, Britton, Gwinn, & Ojeda 1998). The approximation is good as long as the baseline is

short, relative to the scale of the diffraction pattern in the plane of the observer. .

7. Scattering of Beams from Spatially-Coherent Sources

In this section we consider scatfering of a beam of radiation that does not illuminate
the entire scattering disk. In practice, a variety of configurations at the source can result in
non-uniform illumination at the scattering disk. In the context of our formalism, where the
source lies on a thin screen, variations in intensity over the scattering disk arise féom spatial
coherence at the source. In this narrow sense, masers, pulsars, and relativistically-expanding
sources are spatially coherent, because their radiation patterns are non-uniform. A spatially
coherent source will, in general, produce a non-uniform intensity pattern in the observer
plane. This is a consequence of the generalized Van Cittert-Zernicke theorem (Born & Wolf

1980, Goodman 1985).

Non-uniform intensity is important for interstellar scattering only if the source
illuminates the scattering disk unevenly. As a simple model of this situation, we explore
scattering of a source that produces'a beam of radiation with a Gaussian profile. We then
discuss the generalization of this model to more complicated partially spatially coherent

sources.
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7.1. Beam from a Fully Coherent Source

For a completely coherent source, the electric field is identical at different points,
possibly with varying amplitude and phase. As a simple model of a spatially-coherent

source, we consider a source with electric field
E(s) = E(0) e~ 1(s/70) gmilk/R)xos (58)

This source has a Gaussian intensity profile, with standard deviation o¢, and is perfectly
coherent. Here F(0) is an arbitrary eomplex constant that depends on observing frequency,
and xg is a frequency-independent vector. Eq. 2 shows that this source will produce a
Gaussian beam, centered at xo on the scattering screen, with standard deviation (koc/R)™!.
The beam will illuminate the scattering disk if xq < 6D, and the illumination will be
non-uniform if oc > R/k6D; in other words, if the linear resolution of the scattering disk,

viewed as a lens, is finer than the scale of spatial coherence of the source.

The interferometric visibility will be:

i, . —igy .
Cup = (Z % o~ (koo /R)*a}, e—z(k/D)b'xoz> (Z ET e—(kac/R)2:cgJ) e Uk/D)bxo - (59)
) 1 7 7

where xg, = X, — Xg is the offset of the point of stationary phase from the center of the
beam. As this expression shows, the beam illuminates only part of the scattering disk,
leading to smaller angular broadening and a phase offset. Comparison with Eq. 13 shows
that a Gaussian beam differs from an incoherent source of the same size in that the sums
remain uncorrelated, and that the scattering disk is more strongly vignetted, by a factor of

2.
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7.2. Beam from a partially spatially coherent source

Most coherent sources exhibit only partial spatial coherence. Moreover, Ishimaru
(1978, §20-7) points out that an initially collimated, spatially-coherent beam traveling
through a scattering medium will lose its spatial coherence more rapidly than it will lose
its collimation. To characterize mutual coherence, we introduce the cross-spectral density

function (Goodman 1985):
g12(k) = (E(Sl, ]{J)E*(Sz, k))l/B (60)

Again the subscripted angular brackets (...)1,p indicate averaging in time ¢ over many
inverse observing bandwidths. As a simple model for a source with partial spatial coherence,
we consider a source with Gaussian intensity distribution with standard deviation o, and

with cross-spectral density function

I — 59)2 , 1
Gra(k) = 87r(;12 exp {_@_8/1%2)‘} el —ilk/R)xo-(s1-82)} g=5(s1/0)* g~ 5 (s2/0)? (61)

Such a source has partial spatial coflerence and produces a Gaussian beam. The scale of
coherence at the source is . This expression becomes that for a fully spatially-incoherent
Gaussian source of size o, Eq. 9, for 4 — 0, and becomes that for a fully-coherent source
that emits a Gaussian beam (Eq. 58 above with o¢ = o), for p — co. The exp'ression is
easily generalized to the case of anisotropic cross-spectral density function with scales of
spatial coherence ¢ and p, along the 2 axes; or to more complicated expressions when

these axes are not aligned with the coordinate directions £ and 7.

We can use the cross-spectral density function in the same way as the assumption of
complete spatial incoherence, Eq. 9 above, to find the electric field at the observer. The

expression for the interferometric visibility becomes:

Cap = (Z Gole—i(k/R)b.(xm)> (Z G;J) e(k/R)%}’,on-xz e—i(k/R)b-XO, (62)
) ) 7
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where Xo, = X, — X is the location of the stationary-phase point with respect to the center

of the beam from the source, and the reweighted phasor is

Go, = f;ie—%(k/R)"’aﬁv 22 (63)

1
In these expressions, 03 = 0*/(0? + p?) plays the role of o in the correlations between sums
over 1 and 7, and 03, = (o + 202u?)/(0? + p?) plays that role in reweighting the phasors.
Compared with 6 for a spatially-incoherent source of the same size (Egs. 13 and 14), the

effective size of the scattering disk for our partially-coherent source is 6y, where

1 1 o o ou?
— = — —|. 64
7T +2(kD/R)’o (0_2 o (64)

Except for the facts that op # o, O # 6, and the overall phase factor e “k/B)bxo Eq, 62
is identical to Eq. 13; in the limit ;4 — 0 they become identical. The intensity is the same

expression, with b = 0.

7.3. Effects of Nonuniform Illumination

The preceding section shows that beamed radiation offsets the scattering disk,
introducing a phase offset, and reduces its aperture, as compared to a point source.
Beaming also reduces the effective size of an extended source, and reduces the size of the
scattering disk. A smaller scattering disk corresponds to higher visibility on long baselines,
smaller phase variations, and a broader decorrelation bandwidth. A smaller source size
corresponds to narrower decorrelation bandwidth and modulation index closer to 1. For
these effects to be important for interstellar scattering, the source must possess spatial
coherence on a scale sufficient. to resolve the scattering disk: the mutual coheren.ce function
G12(k) must be nonzero for separations |s; — s3| = A/(D/R)6. These effects change the
results of § 3 thorugh 6, which were derived for purely incoherent, unbeamed sources, by

changing @ to 6y and o to op, and by changing the average phase of the visibility. While
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these results are true for a specific, simple model, we may expect that, in general, sources

that illuminate the scattering disk non-uniformly will produce similar effects.

We expect that the beam will not remain directed at the same point on the scattering
disk for long: changes in the structure of the source, or rotation in the case of pulsars, will
carry the beam across the scattering disk. In this case we expect observations to 'Sample the
sum of many beams, each directed at some point on the screen. In the limit of observations
over many independent pulses, for example, we expect that a large number of beams will
illuminate the entire scattering disk, restoring the observables expected for an unbeamed

source.

8. Summary

We present the Kirchoff integra! for the diffraction pattern of a source scattered by a
thin screen, and use the stationary phase approximation to express the integral as a phasor
sum, multiplied by an integral over the source, in strong scattering. For a point source,
intensity is the square of a phasor sum, and interferometric visibility is the product of two
different phasor sums. Finite source size introduces correlations between terms in the two

sums.

Using this formalism we explore the effects of source structure on the scattered
radiation. We calculate the distribution of intensity for a small source, and find that it is
the sum of 3 exponentials, with the largest difference from that for a point source at the
lowest intensities. Similarly, we calculate the distribution of interferometric visibility of a
point source observed on a baseline shorter than the characteristic scale of the diffraction
pattern. This distribution is approximately an exponential, for the real part, and a Gaussian

distribution for the imaginary part. .
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We present expressions for the correlation of intensity with wavenumber
(I(k)I(k + Ak))/(I). We find Lorentzian distributions for a point source or an
extended Gaussian source. We find that extended sources have greater decorrelation

bandwidth than point sources, for the same scattering screen.

We also calculate the correlation function for interferometric visibility with
wavenumber. Because interferometric visibility C4p is complex, the correlation functions
(Cap(k)Cap(k + Ak)) and (Cap(k)Cap®(k + AK)) are different. Both show an overall
decrease in correlation with increasing baseline length and with increasing frequency
difference Ak. The correlation function (Cap(k)Cap”(k + Ak)) contains no information
on source structure beyond that carried by the correlation function for intensity,
(I(k)I(k + Ak))/({I). The decorrelation bandwidth is independent of baseline length, for

this function.

The function (Cap(k)Cag(k + Ak)) carries information about source structure. It
involves the projection of the source, along the direction of the baseline, and so offers the
possibility of sampling the 2-dimensional structure of the source on the sky. We derive
various simple limits of the correlation functions for interferometric visibility. From these
limits we can obtain information on the size of the source and the angular size of the

scattering disk.

We discuss scattering of beams of radiaﬁon, from sources that are, in our formalism,
spatially coherent. We find that these beams “vignette” the scattering disk, and so
effectively have smaller angular broadening than a point source, or a spatially-coherent
source of the same size, scatte‘red by the same screen. A beam from an extended, partially
coherent source has effects equivalent to those of a smaller incoherent source, seen through

a smaller scattering disk.
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Fig. 1.— Geometry for Kirchoff diffraction by material in a thin screen with a random index

of refraction. Radiation from location s on the source travels along path r to scattering
material at location x. The radiation suffers a random phase change ®(x), and propagates
onward to the observer plane along d, where the observer measures the electric field at
location p. The separation of source plane and screen is R, and that of screen and observer

plane is D.
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Fig. 2.-— Model scattering screen and resulting points of stationary phase for a 1-dimensional
screen. Upper: Phase ¢(z) of the transmission function plotted with position on screen z.

The upper, parabolic curve shows the geometric phase, k[% + #]:ﬁ.

The lower, random
curve shows the screen phase ®(z). The middle, irregular parabolic curve shows the net
screen plus geometric phase, ¢(z). Small circles mark points of stationary phase. Lower:
Strengths of points of stationary phase on the screen. The increasing slope of the geometric
phase far from the center of the screen limits the points of stationary phase to a finite region
on the screen: the “scattering disk”. In this example, the spectrum of phase variations is a
power-law, with index of 5/3, the one-dimensional analog of the 3-dimensional Kolmogorov
index of 11/3. The spectrum terminates at a minimum wavelength, or “inner scale”, of
Az = 6. Thus, in this illustration the inner scale is a far larger fraction of scattering disk

size than it is in interstellar scattering, and consequently the number of points of stationary

phase is far less. Adapted from Britton (1997).
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Fig. 3.— Distribution function of intensity of scintillations for a small, extended source
(solid line) and for a point source (dashed line). Both distribution functions are normalized
to unit area and to mean intensity (I) = 1. The extended source has a Gaussian distribution

of intensity, with variances o,? = 0.1A0/27M and 0,> = 0.25A0/2r M. The corresponding
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Fig. 4.— Probability distribution function of the interferometric visibility Cx4p. For this
example, § = kb = 0.5 sets the baseline length at half the scale of the scintillation pattern.
Note that the distribution is approximately exponential along the Re[C4p] axis, and is
approximately Gaussian for the imaginary part, perpendicular to that axis. The standard

deviation of the Gaussian is proportional to.the square root of the real part.
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Fig. 5— Distribution of the correlation functions for interferometric visibility, plotted
with baseline length and difference in observing wavenumber Ak (or difference in observing
frequency Av). Upper: Correlation function (Cap(k)Chg(k + Ak)). Lower: Correlation
function (Cap(k)Cas(k + Ak)). The correlation functions are calculated using Eqs. 48 and
52, for a point source (¢ = u = 0). For the model calculations, the observing wavelength is
A = 2rn/k = 10 cm. The scattering material lies at a distance D = 320 pc, and the source

lies an equal distance beyond the screen, at R = 320 pc. The standard deviation of the

angular broadening is § = 2 mas. The temporal smearing is 7 = 30 psec.



